Humanoid Robot Navigation
نویسنده
چکیده
As the capabilities of the mobile robots as well as their abilities to perform more tasks in an autonomous manner are increased, we need to think about the interactions that humans will have with these robots. Human-robot interaction (HRI) has recently received considerable attention in the academic community, government labs, technology companies, and through the media. The interdisciplinary nature of HRI requires researchers in the field to understand their research within a broader context. Since natural language is the easiest and most natural mode of communication for humans, it is desirable to use it to instruct the robot and to generate easy-to-understand messages for the user. Using natural language to teach a navigation task to a robot is an application of a more general instruction-based learning methodology. It can be used to instruct the robot with higher-level goals or to handle certain behaviors and modify their execution. One effective way is to describe the route to the robot in a multimodal way. On the other hand, significant progress has been made towards stable robotic bipedal walking in the last few years. This is creating an increased research interest in developing autonomous navigation strategies which are tailored specifically to humanoid robots. Efficient approaches to perception and motion planning, which are suited to the unique characteristics of bipedal humanoid robots and their typical operating environments, are receiving special interest. One important area of research involves the design of algorithms to compute robust navigation strategies for humanoid robots in human environments. Therefore, autonomous robot navigation based on route instruction is becoming an increasingly important research topic with regard to both humanoid and other mobile robots. In this dissertation, the problem of humanoid robot navigation in indoor environments is addressed. A complete framework is presented for humanoid robot navigation based on a multimodal cognitive interface. First, a spatial language to describe route-based navigation tasks for a mobile robot is proposed. This language is implemented to present an intuitive interface that enables novice users to easily and naturally describe a route to a mobile
منابع مشابه
Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملWalking navigation system of humanoid robot using stereo vision based floor recognition and path planning with multi-layered body image
To realize humanoid robots in unknown environment, sensor based navigation system is required as one of an essential function. This paper describes visionbased navigation system for humanoid robots, which has
متن کاملOptimum Biped Trajectory Planning for Humanoid Robot Navigation in Unseen Environment 175 Optimum Biped Trajectory Planning for Humanoid Robot Navigation in Unseen Environment
The study on biped locomotion in humanoid robots has gained great interest since the last decades (Hirai et. al. 1998, Hirukawa et. al., 2004, Ishiguro, 2007). This interest are motivated from the high level of mobility, and the high number of degrees of freedom allow this kind of mobile robot adapt and move upon very unstructured sloped terrain. Eventually, it is more desirable to have robots ...
متن کاملInteractive Control of Humanoid Navigation
We present methods to plan bipedal locomomotion across rough terrain and for interactively guiding the navigation of a humanoid robot through complex terrain via an intuitive path-drawing interface. In contrast to full autonomy or direct teleoperation of the robot, the user suggests an overall global navigation route by “drawing” a path onto the environment while the robot is walking. The path ...
متن کاملNavigation Strategy by Contact Sensing Interaction for a Biped Humanoid Robot
This report presents a basic contact interaction-based navigation strategy for a biped humanoid robot to support current visual-based navigation. The robot’s arms were equipped with force sensors to detect physical contact with objects. We proposed a motion algorithm consisting of searching tasks, self-localization tasks, correction of locomotion direction tasks and obstacle avoidance tasks. Pr...
متن کامل